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Abstract

Sirocco is a massively parallel, high performance storage system for the exascale era. It
emphasizes client-to-client coordination, low server-side coupling, and free data movement to
improve resilience and performance. Its architecture is inspired by peer-to-peer and victim-
cache architectures. By leveraging these ideas, Sirocco natively supports several media types,
including RAM, flash, disk, and archival storage, with automatic migration between levels.

Sirocco also includes storage interfaces and support that are more advanced than typical block
storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with
the same interface. It also provides several levels of transactional data updates within a single
storage command, including full ACID-compliant updates. This transaction support extends
to updating several objects within a single transaction. Further support is provided for con-
currency control, enabling greater performance for workloads while providing safe concurrent
modification.

By pioneering these and other technologies and techniques in the storage system, Sirocco is
poised to fulfill a need for a massively scalable, write-optimized storage system for exascale
systems.
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This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further
versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/
sirocco.
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Introduction

Evidence is mounting that current solutions to file storage are going to be inadequate for ex-
ascale systems. The hardware composition of storage systems are going through fundamental
changes driven by changing economics of storage devices. Pure disk-based systems are no longer
capable of sustaining the I/O bandwidth required to write full-system checkpoints, forcing de-
signers to include heterogeneous, task-specific storage technologies into system designs. Further,
exploding core counts are increasing the numbers of clients requiring access to storage.

We believe that storage system software needs a radical redesign to maintain high write band-
width for checkpoint-restart, a critical capability for large scale simulation. Sirocco is a new design
for a write-optimized parallel storage service that uses novel techniques to address the current chal-
lenges of storage for massively parallel workloads.

Sirocco is a parallel storage system for extreme scale computing. It is inspired by the loosely
coupled semantics of unstructured peer-to-peer file sharing systems. By leveraging a peer-based
caching architecture throughout the storage system, clients are free to target appropriate storage
servers based on such metrics as network performance, load, capacity, and media characteristics,
without regard to assigned data location. This design enables local (i.e., within file system client,
storage server, or job) decision making instead of global state maintenance, allowing unrelated
tasks to proceed without unnecessary contention. We believe that the result will be superior, un-
compromising write performance.
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Sirocco Design Principles

There are a small number of guiding principles for Sirocco design.

1. There is no central index that determines where a piece of data must be stored. Clients of
the storage system are allowed to place data within any store of the system they can reach.
As a consequence, the location of a required piece of data may not be known at the time it is
needed.

2. Data will be continually moving within the system to ensure longevity, integrity, and system
health. Replicas will be created and destroyed, and servers will eject data into more durable
stores. Clients will not be notified of these events. A related benefit of this is that growing
and shrinking a Sirocco store is trivial.

3. Sirocco’s design emphasizes scalability over legacy support. Support for legacy storage
system semantics, like POSIX, are required; however, overall system scalability should not
be harmed by POSIX considerations. Indeed, more scalable storage semantics should see
better performance over Sirocco than POSIX.

4. Heterogeneous media (including temporary RAM-based stores, flash-based burst buffers,
disk, tape, and others as they become available) should be supported transparently, with
symmetric APIs for data access.

5. All data are not created equal, and some forms need higher resilience guarantee than others.
Clients should be able to determine the level at which Sirocco protects data.

6. All server-side operations should be as scalable as possible, particularly when running on
real-world, faulty hardware. Therefore, servers should not couple during any operation.

8



System Overview

Sirocco is designed to be the storage component for the Lightweight File System, an architec-
ture that provides basic storage services necessary to all applications, while leaving other function-
ality to be provided by libraries [7]. Examples of “optional” services provided by libraries include
naming, consistency, metadata, and interfaces. Below are a list of features provided natively by
Sirocco.

The Storage Swarm

One of the central defining features of Sirocco is the non-static, Quality-of-Service-oriented
organization of the storage servers. This is referred to as an unstructured peer-to-peer organiza-
tion. As opposed to structures like distributed hash tables [8], where a structured overlay network
is employed to enable routing, data distribution, and location, Sirocco eschews structure to instead
focus on maximizing overall network performance among stores. This is accomplished by choos-
ing the closest, highest-performing peers available as neighbors, and using those as storage targets
and next hops for location requests.

Sirocco uses a two-stage method for building a useful overlay network. For the first stage, we
are currently evaluating the Self-Aware P2P (SAP2P) overlay, an adaptive and locality-aware peer-
to-peer membership protocol [6]. It includes distance-optimized links, using the lowest known
latency links to form local neighbor connections to nearby nodes, as well as a small number of
random links to ensure connectivity. The second stage is driven by locality as well as node needs–
Addresses for nodes that have necessary resources (e.g., durable stores or large amounts of free
space) are preferred.

This comprehensive overlay is used for a variety of purposes, including data migration and
replication. One of the design criteria that SAP2P claims to satisfy is churn resilience: That is,
significant numbers of members should be able to join and leave the network, and the overlay
should be able to avoid partitioning.

One reason that churn resilience is so important is because Sirocco’s design lends itself to an
interesting use case. To accelerate checkpoint workloads, one can use an allocation of compute
nodes as write back caches for checkpoint workloads. This is a similar technique to the use of
a burst buffer. We showed the efficacy of using an application-specific client to achieve massive
checkpoint speedup using Sirocco compute section allocations [3]. In order to facilitate this use,
Sirocco should be able to handle near-simultaneous joining and departure of hundreds or thousands
of servers in short time frames.
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Name Space

Sirocco is a parallel object-based storage system that provides primitives to enable higher-
level parallel file systems. As such, it does not provide human friendly names and constructs, but
instead has an ID-based name space. This object name space is an implementation of the Advanced
Storage Group (ASG) interface [4], which was partially developed for Sirocco in collaboration with
Argonne National Laboratory. This section describes how clients use the name space, and storage
within it.

The name space is made up of three 64-bit values. These values denote a container ID, object
ID, and fork ID, which can be expressed as 〈container,object, fork〉. Loosely, container IDs usually
map to file systems within the storage system, object IDs map to files, and fork IDs map to data
forks within a file. The hierarchy and relationships are static; forks cannot move between objects,
for example.

Each fork contains a key-value (KV) store, where the key is 64 bits, and the value (or record)
is a variable-length record that can theoretically be up to 264 bytes long. Currently, a value is
practically limited to 232 bytes. Each value is atomically modified in its entirety; one cannot
partially update a record. As will be discussed, the ASG interface supports KV operations and
traditional bulk operations with the same functions.

Sirocco reserves forks within the name space for security information. Each container x such
that x 6= 0 has security information recorded in the KV store located in 〈0,0,0〉, record x. Each
object y in container x has security information stored in the KV store 〈x,0,0〉, record y. Each fork
z in object y in container x has security information stored in record z of 〈x,y,0〉. Access to the
records within a fork is protected by the security attributes of the fork. If not present, attributes are
inherited from the object or container.

Each record has a user-modifiable attributed called the update ID. The update ID is a logical
clock that is expected to increase after each write. This mechanism is used to determine the most
recent version of a particular record, given that multiple versions of the record may exist on dif-
ferent stores in the storage system. In particular, Sirocco will use the update ID to reconcile two
instances of a record during migration from one server to another, or while searching for data: If
the update IDs are different for a record, the largest update ID determines which record is correct.
The client is expected to know (or determine) an appropriate update ID to use for a record for each
write.

Data Interfaces

Sirocco provides the following types of operations:

• Write: Given a data buffer, container ID, object ID, fork ID, start record, number of records,
record length, and update ID, the range will be overwritten on the server transactionally (i.e.,
all data is written to the record range, or none of it is). Optionally, one can provide an update
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condition (see Section ) and an update ID to use with it. A user can omit the update ID, and
instead use an automatically incremented update ID on that store.

• Read: Sirocco supports sparse data within forks, creating a need for obtaining a map that
describes the data present. The read operation allows for the user to obtain the map, the data
within the requested range, or both as an atomic operation. The map will, for all records
present, indicate the size and update ID of each record.

Any read operation requires an container ID, object ID, fork ID, start record, and number of
records. A buffer is required for the map and/or the data to be received. Optionally, one can
provide an update condition and an update ID to use with it. One can provide invalid IDs for
the fork, object, and/or container ID (called INVALID ID in the API) to obtain a map of an
object, a container, or containers, respectively, within the store.

An interesting feature of this API is that there are no “create” or “delete” operations. Creation
is implicit: Writing a range of records in an object is enough. One way to think about this is to
reason that all objects exist at all times, they just do not have any data within them. Likewise,
deletion is resetting the records within the object to their default state. This is accomplished with
a reset call, which is not yet developed enough to discuss in this document. A command similar
to punch can be implemented with a write of zero-length records over a range. Note that this does
not have a distributed effect, so any copies of the data residing on other servers will continue to
persist.

Data Durability

One side effect of the free placement enabled by the Sirocco model is that data can be held
temporarily in a location that is not ultimately considered safe enough to hold the data. This is a
typical behavior in a write-back caching model. For instance, In a local POSIX file system, bulk
I/O contents can be temporarily held in memory. The user is only guaranteed that I/O requests will
reach full durability if she calls “sync.” Sirocco employs a similar technique.

Each server has a durability attribute that it holds for a fork. This durability attribute is an
abstract value that acts as a measure of final durability the contents of that fork should have. These
values are satisfiable by storing data on sufficiently durable stores, e.g. a set of disks in a RAID,
or by replicating across less safe stores. The server accepting the write is obligated to eventually
ensure that the data is protected to the specified level of durability at some point in the future. The
client ensures that this has taken place by issuing a sync command over a range of records.

Batched Updates

To increase network efficiency, it is possible to send several commands to a server at once. This
mechanism can be used to implement list I/O [2] or other non-contiguous I/O operations, even
across different objects. Sirocco also allows batches to be specified as transactional, enabling fully
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ACID updates to records. Paired with concurrency control (see Section ), transactional batches can
be an extremely powerful construct.

Concurrency Control

Concurrency control is the ability to ensure a correct outcome to concurrent updates to shared
data by multiple clients. There are two methods for accomplishing concurrency control. The
most common used in file systems is pessimistic concurrency control, where explicit locks are
used to protect data. Other systems, including database management systems, employ optimistic
concurrency control, where operations can be attempted, then rolled back in the event of an invalid
concurrent modification [5]. Because there are benefits to each approach in different situations,
Sirocco has facilities for each type.

Optimistic Concurrency Control
Optimistic concurrency control is beneficial in cases where the likelihood of conflicting operations
is low, and locking would incur a significant overhead on the operation. An example is a read-
modify-write operation on a remote store. Taking and releasing a lock would double the number
of network round trips to complete the operation.

Sirocco implements optimistic concurrency control for a more general workload. Instead of
inspecting data, the server executing the operations compare the incoming update IDs with those
already present. If the transaction contains a conditional write, the server executing the write will
ensure that the incoming update ID is greater than any currently present.

Conditional writes work natively within transactional batches, extending their applicability to
more complex workloads. If a conditional write fails, the enclosing transaction is also failed,
rolling back any changes previously incurred. More information on uses and performance of con-
ditional updates can be found in previously published work [1]

Pessimistic Concurrency Control
Sirocco also provides storage semantics that a client library can leverage to implement traditional
leased locks. The basic mechanism is the triggered batch, an operation that is similar to a condi-
tional update, but with three important differences. First, a triggered batch does not fail when a
condition is not met, but instead is queued and executed in order once the condition becomes true
(probably due to a non-triggered write from another server). Second, a triggered batch is simply
a condition attached to a batch that will execute in full once the condition is satisfied; it does not
modify data on its own. Third, a triggered batch can only be used on a single record.

A few additional considerations are allowed for triggers to enable failure recovery if a client
fails to release a lock. During a triggered operation, the client is notified of progress: First when
the operation is deferred for later execution, and then when the queued operation is next in line to
be executed (along with a server time stamp). This allows a waiting client to detect that the current
holder of the lock is not releasing it, thus allowing the client to invoke a recovery protocol.
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We have sketched a simple leased locking protocol using triggered batches.

1. A lock requester will submit a triggered batch on the update ID of a record on the lock server,
allowing the operation to proceed when the update ID reaches a value indicating an unused
state. The batch will contain a write operation in addition to the trigger, setting the lock
record’s update ID to a value indicating the lock is in use (say, two), its value to the relative
duration of the lock.

2. When the requester is at the head of the wait queue on the record, the server will notify the
locker of its status, along with the time the last conditional batch executed, i.e., the start time
of the last lock.

3. The requester can then issue a read to get the duration of the lock from the record and
reconcile that with the time received in the head of queue notification to calculate the duration
of wait.

4. The client currently holding the lock, as part of the release, will write the record such that the
update ID is one, allowing the requester’s trigger to be satisfied. The requester’s triggered
batch will execute, modifying the record to reflect the requester obtaining the lock.

5. Once the requester finishes using the lock, the requester will release the lock by issuing a
conditional write to the record resetting the update ID to one, allowing the next (if any)
triggered batch to execute.

There are two failure cases to consider in this protocol: the non-responsive locker, and the non-
responsive requester at the head of the queue. In the case of the non-responsive locker, the requester
at the head of the queue is able to force the non-responsive locker out after reading the record and
its metadata by issuing a batch conditional on the previous locker’s version. If the non-responsive
locker is simply slow to respond, when it attempts to unlock the record, it will receive a deferral
in the execution of its lock release, allowing it to cancel gracefully. The non-responsive requester
can be removed from the head of the queue without issue, as it never receives a head-of-queue
message.

Read/Location Protocols

While free data placement helps some workloads, reading requires extra work. While we do
not consider read-heavy workloads a solved problem, Sirocco provides two facilities to make reads
possible.

The first facility enables reading data that the client did not predict it would need, i.e. a random,
one-off read. Such a read requires an extensive search over the population of storage servers, which
Sirocco will perform on behalf of the user. We are conducting research on how best to reduce the
expense of such searches [9], improving the efficiency over exhaustive broadcast searches.
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The second facility, proxying, enables efficient reading in the case of data that we can predict
will be read, especially by multiple clients. Data like file system structures and metadata can be
quite efficiently supported through this mechanism. It is noteworthy that this mechanism relies on
cooperation of clients that would access the proxied range of records.

Each server, when initially started, considers itself non-authoritative for all records. This qual-
ity simply means that any read requests that are issued to that server may be anywhere in the
system, or may have been recently written to a new server, so no optimizations to the location pro-
cess are possible. However, by convention with other clients, a server may be deemed authoritative
for particular read requests by setting a flag. Once the server is authoritative for that range, clients
must direct all write requests for that range to that server. This enables caching of data and/or
previously discovered locations, enabling correct proxied access to data so long as the server re-
mains authoritative. Although cached locations of data may change due to migration, this is easily
detected by the authoritative server by inspecting update IDs of read data.
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Conclusion

Sirocco is a paradigm shift in parallel storage system design. While there are many oppor-
tunities for improved performance, Sirocco remains a work in progress. As we develop and use
Sirocco, we will better understand the requirements for efficient client operations. We have already
identified several facilities to enable efficient file system client implementations.

As Sirocco is developed and refined, we will be making updates and corrections to this docu-
ment. Future iterations will be available at http://www.cs.sandia.gov/Scalable_IO/sirocco.
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